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Brazil
b Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalı́tica, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz s/n, CEP 13083-970,
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e Departamento de Quı́mica, Universidade Estadual de Londrina (UEL), Rod. Celso Garcia Cid, PR 445 km 380, Campus Universitário, Londrina-PR, CEP 86051-990, Brazil
a r t i c l e i n f o

Article history:

Received 22 June 2012

Received in revised form

14 August 2012

Accepted 17 August 2012
Available online 25 August 2012

Keywords:

Preconcentration

Speciation

Cr(III)

Cr(VI)

SiO2/Al2O3/TiO2 and SiO2/AAPTMS
40/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.talanta.2012.08.023

esponding author at: Departamento de Quı́m

a (UEL), Rod. Celso Garcia Cid, PR 445 Km

a-PR, CEP 86051-990, Brazil. Tel.: þ55

86.

ail address: tarley@uel.br (C.R.T. Tarley).
a b s t r a c t

In the present study, a flow injection system using dual mini-columns, SiO2/Al2O3/TiO2 and silica gel

functionalized with [3-(2-aminoethylamino)propyl] trimethoxysilane (SiO2/AAPTMS) for the sequential

preconcentration of Cr(III) and Cr(VI), respectively, from water samples with FAAS detection was

proposed. A two-level full factorial design (24) and desirability function were employed for the

optimization of variables related to the system performance. The detection limits of 0.66 and

0.27 mg L�1 for Cr(III) and Cr(IV), respectively, were obtained under the optimized preconcentration

conditions (flow rate of 7.0 mL min�1), pH 5.0, buffer concentration (acetate buffer) of 0.01 mol L�1,

and eluent (2.5 mol L�1 HCl) flow rate of 5.0 mL min�1. The other parameters including preconcentra-

tion factor (PF), consumptive index (CI), and concentration efficiency (CE) were found to be 17.62/32.98,

1.13/0.6 mL, and 6.2/11.54 min�1 for Cr(III)/Cr(VI), respectively. The developed method was applied

to the Cr(III) and Cr(VI) determination in water samples [tap, lake and mineral water, artificial saliva

and parenteral solutions (physiological serum, water for injection, and glucose physiological solution)].

The method accuracy was checked by the analysis of standard reference materials (trace elements

in water).

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Cr(III) is considered to be an essential trace nutrient for humans,
and it plays an important role in lipid, glucose and protein
metabolism. Conversely, Cr(VI) is highly toxic, since it is a strong
oxidant and also a potential carcinogen. The difference in toxicity
between Cr(VI) and Cr(III) leads to a great interest in the speciation
and determination of chromium species in environmental and
biological samples [1]. Cr(III) is often used as a dietary supplement
for some patients with diabetes, and absorption rates of this
reduced form of chromium can be evaluated by monitoring its
urinary levels. The normal chromium level in urine should be less
ll rights reserved.
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than 1.0 mg L�1, whereas for occupationally exposed patients and
complementary diets it may vary from 20 to 30 mg L�1 [2]. The
Brazilian National Council for the Environment (CONAMA) fixed
the maximum amount of Cr(III) and Cr(VI) in effluents discharged
into aquatic bodies at 0.1 and 1.0 mg L�1, respectively [3]. The
maximum contaminant levels established by the US Environmen-
tal Protection Agency (US EPA) for total chromium in drinking
water and by the World Health Organization (WHO) for Cr(VI) are
0.1 and 0.05 mg L�1, respectively [3,4]. Therefore, the development
of sensitive and selective methods for the chromium speciation is
of great importance, and some solid-phase separation/preconcen-
tration systems coupled to spectroanalytical techniques (FAAS,
GFAAS, and ICP-OES) have been employed to remove matrix
interferences and improve the detectability.

In some studies, Cr(III) was selectively sorbed on a b-cyclo-
dextrin cross-linked polymer as a 4-(2-pyridylazo)-resorcinol
complex and then eluted with 1.0 mol L�1 HCl [5]. Since
Cr(VI) does not form complexes with 4-(2-pyridylazo)-resorcinol,
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it remains in the aqueous phase. Total chromium was determined
by graphite furnace atomic absorption spectrometry (GFAAS)
after the reduction of Cr(VI) to Cr(III) using hydroxylamine
hydrochloride in 2.0 mol L�1 HCl, and the Cr(VI) concentration
was calculated by subtracting the value for Cr(III) from that for
total chromium. Other researchers employed MCM-41 mesopor-
ous silica functionalized with 3-aminopropyl groups for the
selective retention of Cr(VI) in its anionic form at pH 2.0 [6],
which was eluted with a mixture of 0.1 mol L�1 hydroxylammo-
nium chloride and 1 mol L�1 hydrochloric acid and determined
by GFAAS, whereas Cr(III), not retained by the sorbent, was
quantified after collecting the solution at the micro-column
end [6]. In other works, Cr(VI) and Cr(III) were selectively sorbed
from aqueous solutions at pH 2 and 6, respectively, using Duolite
C20 modified with active hydrazone [7]. Similar experiments
were carried out with activated alumina for the Cr(III) and Cr(VI)
retention at pH 7.0 and pH 2.0, respectively [8]. Besides, using
ethanol as eluent, Cr(III) was sorbed as dithizonated chelate on a
Chromosorb 108 resin, and Cr(VI) was reduced by concentrated
H2SO4 for the total chromium determination [9]. This approach
was also applied for the Cr(VI) sorption on polytetrafluoroethy-
lene (PTFE) as a metal complex with ammonium pyrrolidine
dithiocarbamate (APDC) using isobutyl methyl ketone (IBMK) as
eluent [10].

These methods have some unavoidable shortcomings regard-
ing the chemical speciation, since they require sample pH changes
or chemical treatments in order to determine total chromium
amounts. To some degree, dual mini-columns can be used for
solving such problems. Some authors employed silica gel mod-
ified with zirconium phosphate (SiO2–ZrP) or cation-exchange
iminodiacetate extraction disks and zirconium-oxide-modified
silica (SiO2–Zr) or anion-exchange iminodiacetate extraction
disks, respectively, for the Cr(III) and Cr(VI) sequential sorption
at different pH values [11,12]. For these methods, aggressive
sample pretreatment procedures are not necessary, but only the
sample pH readjustment is required for an effluent from the first
sorbent, which makes the method performance somewhat com-
plicated and results in the sample contamination. In other cases, it
was possible to use dual mini-columns for the chromium specia-
tion without readjusting the sample pH, but a reducing agent was
still required in the preconcentration system [4,13]. Therefore, the
development of sequential preconcentration methods using dual
columns can be very desirable for the chemical speciation using
minimal sample treatment, although such strategies have
been poorly implemented. In some other works, Cr(III) and Cr(VI)
were determined by ICP OES after their sequential retention
on a ME-03 commercial resin and chitosan cross-linked with
4-hydroxyphthalic acid modified ethyleneglycoldiglycidylether
(CCTS-HPA resin) at pH 3.5 [14]. Zou et al. [15] employed a
biosorbent (Chlorella vulgaris) and 717 anion exchange resin to
selectively retain Cr(III) and Cr(VI) at pH 6.0. Considering the
aforementioned, in order to preconcentrate Cr(III) and Cr(VI)
species at the same sample pH, the present research focuses on
the synthesis of two sorbent materials based on the chemical
modification of a silica matrix with Al2O3/TiO2 and [3-(2-ami-
noethylamino) propyltrimethoxysilane (AAPTMS), respectively.
Silica gel was chosen as a support material due to its intrinsic
characteristics, such as large surface area, high adsorption capa-
city and absence of swelling effects at high flow rates, which are
very important in on-line preconcentration systems. Apart from
the fact that the chemical modification brings more selectivity to
silica gel, our research group has recently reported that grafting
with mixed oxides leads to a significant improvement in its
chemical stability and adsorption capacity [16–18]. Finally, con-
sidering the nature of the on-line sequential preconcentration
system developed herein for the Cr(III) and Cr(VI) determination,
chemometric tools were implemented based on a factorial design
and multiple response optimization.
2. Experimental

2.1. Instrumentation

All absorbance measurements were carried out using a Shi-
madzu AA-6601 flame atomic absorption spectrometer (Tokyo,
Japan) equipped with a hollow cathode lamp for chromium
determination and deuterium lamp for background correction.
The hollow cathode lamp was operated at 8.0 mA, and the
wavelength was set at 357.8 nm. The flame composition was
operated with an acetylene flow rate of 2.9 L min�1 and air flow
rate of 10.0 L min�1. The on-line sequential preconcentration
system was built up using an Ismatec IPC-08 peristaltic pump
(Glattzbrugg, Switzerland) equipped with Tygons and polyethy-
lene tubing (0.5 mm id). Two home-made minicolumns made of
polyethylene (1.0 �0.5 mm i.d.) for packing SiO2/Al2O3/TiO2 and
(1.5 �0.5 mm i.d.) for packing SiO2/AAPTMS with end caps were
used in the experiment. A home-made commutator injector was
used for switching between the stages of preconcentration and
elution.

Scanning electron micrographs (SEM) were acquired with a
JEOL JSM 300 scanning electron microscope (Tokyo, Japan) oper-
ating at 30.0 kV. Samples were deposited onto a double-sided
carbon tape fixed to a brass sample holder and subsequently
coated with a 30-nm gold film. For energy dispersive spectro-
scopy (EDS) analyses, the same procedure was performed, exclud-
ing gold plating. The specific surface area (S0) of the mixed oxide
obtained was determined with a Quantachrome Nova 1200e
equipment (Boynton Beach, Florida, US) and estimated by the
multipoint BET (Brunauer–Emmett–Teller) method; the samples
were preactivated at 300 1C for 2 h under vacuum. The average
pore size and average pore volume were obtained through the BJH
(Barrett–Joyner–Halenda) method. The Al2O3 and TiO2 contents in
the sample were measured with a Shimadzu EDX-800HS energy
dispersive X-ray fluorescence (EDXRF) spectrometer (Tokyo,
Japan). X-ray diffraction (XRD) data were collected at room
temperature on a Rigaku Ultima IV instrument (The Woodlands,
Texas, US) with CuKa radiation (1.5418 Å) generated at 40 kV and
40 mA. Diffractograms were obtained in the range of 51o2yo801
with a step of 0.1 and a counting time of 1 s. Infrared spectra
(range 4000–400 cm�1) were recorded in the range of 4000–
400 cm�1 on a Shimadzu FTIR-8300 spectrometer (Tokyo, Japan)
operating in transmission mode at 4 cm�1 resolution and using
KBr pellets (1% w/w). The sample pH was measured with a
Metrohm 826 pH mobile digital pH meter (Herisau, Switzerland).

2.2. Reagents and solutions

All reagents used were of the highest available purity and
prepared with ultrapure water (resistivity: 18.2 MO cm�1) from
a Milli-Q purification system (Millipore, Bedford, MA, US).
To prevent any risk of metal contamination, all glassware was
soaked in 10% (v/v) HNO3 for 24 h and rinsed with high-purity
water before use. 1000.0 mg L�1 standard solutions of Cr(III) and
Cr(VI) were prepared from CrCl3 �6H2O (Vetec, Rio de Janeiro,
Brazil) and K2Cr2O7 (Merck, Darmstadt, Germany), respectively,
dissolved in 5% HCl). The working solutions were obtained by
stepwise dilution of the standard solutions in ultra-pure water.
Solutions of HCl and HNO3 were prepared by appropriate
dilution of their concentrated solutions purchased from Merck
(Darmstadt, Germany). Solutions of cationic [Al(III), Ba(II), Cd(II),
Co(II), Pb(II), Ca(II), Mg(II), K(I), Cu(II), Fe(III), Mn(II), Ni(II), and
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Zn(II)], used to study interference effects, were prepared from
their respective nitrate and sodium salts, respectively (all of
analytical grade). The solutions were stored in polyethylene
bottles and stored in at 4 1C until analysis. The solution pH was
adjusted with nitric acid to pH 1.0, sodium acetate/acetic acid to
pH 3.0–5.0 and sodium phosphate to pH 7.0–8.0. Tetraethylortho-
silicate (TEOS, 98%), titanium butoxide (97%), aluminum isoprop-
oxide (98%) and trifluoroacetic acid were purchased from Sigma-
Aldrich (Steinheim, Germany), and ethanol (PA) was acquired
from Vetec (Rio de Janeiro, Brazil). Micrometer-sized silica (63–
210 mm), with pore volume of 60 Å e surface area of 550 m2 g�1

and [3-(2-aminoethylamino)propyltrimethoxysilane (AAPTMS)
were acquired from Sigma-Aldrich.
2.3. Al2O3/TiO2 mixed oxide preparation and grafting on a silica

matrix and silica functionalization with AAPTMS

The detailed protocol for the synthesis of Al2O2/TiO2 mixed oxide
grafted on silica and its chemical characterization can be found in
reference [18]. The preparation of AAPTMS-functionalized silica gel
was carried out according to reference [19]. Approximately 50 g of
micrometer-sized silica gel was dried at 130 1C overnight, and
150 1C for 6 h under vacuum. Then, the gel was mixed with 30 mL
of AAPTMS in 100 mL of toluene used as solvent. The reaction was
maintained at 100 1C for 24 h under constant stirring in nitrogen
atmosphere. After that, the mixture was filtered and washed with
toluene and ethanol. The resulting material was washed with
ethanol in a Soxhlet extractor for 6 h. Finally, the solid (SiO2/
AAPTMS) was dried at 60 1C for about 4 h under vacuum (at about
10�3 mmHg). The infrared spectra (data not shown) of the AAPTMS-
functionalized silica gel showed a band at around 1580 cm�1

attributed to the N–H bond, which was not observed for the non-
modified silica material, thus indicating successful grafting of
AAPTMS on the silica surface [20].
Fig. 1. Diagram of the flow system for preconcentration and sequential speciation of Cr(

respectively. (a) Preconcentration of Cr(III) and elution of Cr(VI), (b) Preconcentratio

SiO2/Al2O3/TiO2 (200 mg), C2¼mini-column packed with SiO2/AAPTMS (200 mg), W¼w
2.4. On-line sequential preconcentration system for the Cr(III)

and Cr(VI) determination

In the on-line sequential preconcentration system coupled to
FAAS (Fig. 1a and b), 20 mL of a solution containing Cr(III) and Cr(VI),
buffered with 0.05 mol L�1 acetate/acetic acid at pH 5.0, were
loaded into the mini-columns, packed with SiO2/Al2O3/TiO2 (C1,
200.0 mg) and SiO2/AAPTMS (C2, 200.0 mg) to retain Cr(III) and
Cr(VI) species, respectively, at 7.0 mL min�1. When Cr(III) was
sorbed on SiO2/Al2O3/TiO2, a 2.5 mol L�1 HCl solution was perco-
lated simultaneously in countercurrent through the mini-column
with SiO2/AAPTMS at the same flow rate in order to strip off Cr(VI).
Then, preconcentrated Cr(III) was stripped off with 2.5 mol L�1 HCl
by switching the injector to the elution position (Fig. 1b) and
determined by FAAS. Therefore, in this procedure, Cr(III) and
Cr(VI) were selectively preconcentrated on SiO2/Al2O3/TiO2 and
SiO2/AAPTMS, respectively, at the same pH (5.0) using the same
eluent (2.5 mol L�1 HCl).
2.5. Sample preparation

Water taken from Lake Igapó (Londrina, Brazil) was collected
in polyethylene bottles and then directly filtered through 0.45 mm
cellulose acetate membranes under vacuum. Mineral water (two
different brands) was acquired from supermarkets, whereas tap
water (1) was obtained from the Department of Chemistry of the
State University of Londrina. Tap water samples (2 and 3)
were taken at S~ao José do Rio Preto City (S~ao Paulo State, Brazil).
Water for injection, acquired from the University Hospital of the
State University of Londrina, and parenteral solutions, including
physiological saline (NaCl 0.9% w/w, two different brands),
glucose (5% w/w) and artificial saliva [21], were also examined.
The sample pH was adjusted to pH 5.0 with a 0.01 mol L�1
III) and Cr(VI) using mini-columns packed with SiO2/Al2O3/TiO2 and SiO2/AAPTMS,

n of Cr(VI) and elution of Cr(III).PP¼peristaltic pump, C1¼minicolumn packed

aste, S¼sample containing Cr(III) and Cr(VI), E¼eluent (2.5 mol L�1 HCl).



Table 1
Factors, levels, and experimental matrix of 24 factorial design.

Factors Levels

Low (�) High (þ)

Buffer concentration (BC) (mol L�1) 0.01 0.10

Eluent concentration (EC) (mol L�1) 0.8 2.5

Flow preconcentration (FP) (mL min�1) 3.5 7.0

Eluent type (ET) HCl HNO3

Exp. BC EC FP ET Absorbance

Cr(III) Cr(VI) Overall desirability

1(91) �(0.01) �(0.8) �(3.5) �(HCl) 0.1142 0.0916 0.5241

2(161) þ(0.10) �(0.8) �(3.5) �(HCl) 0.0991 0.0634 0.2756

3(111) �(0.01) þ(2.5) �(3.5) �(HCl) 0.1200 0.1734 0.8907

4(151) þ(0.10) þ(2.5) �(3.5) �(HCl) 0.1155 0.1895 0.8872

5 (41) �(0.01) �(0.8) þ(7.5) �(HCl) 0.0825 0.1035 0.1618

6(51) þ(0.10) �(0.8) þ(7.5) �(HCl) 0.0935 0.0573 0.2047

7(11) �(0.01) þ(2.5) þ(7.5) �(HCl) 0.1190 0.2050 0.9754

8(61) þ(0.10) þ(2.5) þ(7.5) �(HCl) 0.1164 0.1884 0.8950

9(101) �(0.01) �(0.8) �(3.5) þ(HNO3) 0.1033 0.0712 0.3447

10(141) þ(0.10) �(0.8) �(3.5) þ(HNO3) 0.0996 0.0360 4.400�10�9

11(121) �(0.01) þ(2.5) �(3.5) þ(HNO3) 0.1130 0.0922 0.5177

12(131) þ(0.10) þ(2.5) �(3.5) þ(HNO3) 0.0928 0.0620 0.2203

13 (21) �(0.01) �(0.8) þ(7.5) þ(HNO3) 0.1000 0.0670 0.2999

14(71) þ(0.10) �(0.8) þ(7.5) þ(HNO3) 0.0798 0.0372 1.500�10�9

15(31) �(0.01) þ(2.5) þ(7.5) þ(HNO3) 0.1210 0.1038 0.6334

16(81) þ(0.10) þ(2.5) þ(7.5) þ(HNO3) 0.0839 0.0585 0.1151

Values in parenthesis express actual levels of studied factors.
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sodium acetate/acetic acid buffer solution, and the samples were
analyzed immediately.

2.6. Optimization strategy for the proposed system

Chemical and flow factors that influence the Cr(III) and Cr(VI)
on-line sequential preconcentration system were investigated
using a full 24 factorial design. Experiments were carried out
in duplicate. The advantages of this design for optimization of
analytical methods have been well documented, since it reduces
the number of tests and, consequently, analysis time and allows
to evaluate interaction effects between factors studied [22].
Herein, multiple response optimization based on overall desir-
ability functions was performed, considering that two responses
were sequentially obtained [Cr(III) and Cr(VI) absorbances].
Table 1 presents low and high levels established for each
factor studied and experimental matrix employed. All data were
processed using the STATISTICA software package (StatSoft,
Tulsa, US).
3. Results and discussion

3.1. pH effect

The sample pH plays an essential role in the Cr(III) and Cr(VI)
sorption on SiO2/Al2O3/TiO2 and AAPTMS. A aliquot of 20 mL of
Cr(III) or Cr(VI) solution at 100 mg L�1 concentration was sub-
mitted to the preconcentration procedure at varied pH (1.0–9.0)
using the mini-columns. As seen in Fig. 2a, Cr(III) was sorbed very
well on SiO2/Al2O3/TiO2 in the pH range of 3.0–7.0, whereas the
Cr(VI) sorption was negligible. On the other hand, Cr(III) was not
sorbed on SiO2/AAPTMS in the same pH range, whereas the Cr(VI)
sorption was considerably improved by increasing the sample pH
(Fig. 2b). It can be observed that Cr(III) and Cr(VI) were selectively
sorbed on SiO2/Al2O3/TiO2 and SiO2/AAPTMS, respectively, at
pH 5.0 without any interference.

The Cr(III) retention on SiO2/Al2O3/TiO2 could be explained by
electrostatic interactions with the oxygen atoms coming from the
Si–O–Al–O–H and Si–O–Ti–O—H bonds grafted to the silica
matrix. The Cr(III) sorption was low at smaller pH values due to
the protonation of the oxygen atoms, and it augmented when
increasing the pH values until pH 7.0, since SiO2/Al2O3/TiO2

acquired negative charges leading to effective Cr(III) retention.
The decrease in the Cr(III) sorption at pH47.0 could be due to the
formation of unsorbed [Cr(OH)4]�. On the other hand, the Cr(VI)
sorption on SiO2/Al2O3/TiO2 was negligible due to the existence of
CrO4

2� , HCrO4
� and H2CrO4, whereas on the SiO2/AAPTMS it was

more effective, since the amino groups of AAPTMS, being weak
bases and presenting positive charges, were able to retain anionic
species and strip off cationic ones.
3.2. Multivariate optimization of the on-line preconcentration

method

The use of desirability functions for multiple response optimi-
zation experiments was proposed by Derringer and Suich [23].
To obtain overall desirability, individual desirability of all res-
ponses (in this case, Cr(III) and Cr(VI) absorbances) should be
determined. Thus, each response yi (i¼1,2,ym) is transformed
into a scale-free value, which is called an individual desirability
function (di). Individual scales can vary from 0 (for an unaccep-
table response) to 1 (for a desirable response). The individual
desirability function was calculated according to Eq. (1) (the
larger-the-better (LTB) type), which was used to maximize the
Cr(III) and Cr(VI) analytic responses.

di ¼
yi�L

H�L

� �
ð1Þ
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Fig. 2. Sample pH effect on the absorbance of Cr(III) and Cr(VI) (100 mg L�1)

(a) using the mini-column with SiO2/Al2O3/TiO2, and (b) using the mini-column

with SiO2/AAAPTMS.
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where, yi is the Cr(III) or Cr(VI) absorbance; L and H are the lower
and upper absorbances, respectively, observed in the experiments
for these chromium forms. The overall desirability (D) was
calculated by determining the geometric mean of the individual
desirabilities (Eq. (2)).

D¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dP1

1 dP2

2 � � �d
Pn
n

m

q
ð2Þ

where, m is the number of responses (in this case, 2); Pn is the
weight corresponding to each of these responses; the unitary
weight of the Cr(III) and Cr(VI) responses was used herein, giving
the same importance to both species. D¼1 indicates a fully
desired response, above which further improvements would have
no importance.

The individual and overall desirability profiles for Cr(III) and
Cr(VI) are shown in Fig. 3. It can be observed that the eluent
concentration (EC), eluent type (ET) and buffer concentration (BC)
play an important role in the system due to their interrelationship,
which was confirmed by the analysis of variance (ANOVA) at the
95% confidence level. The BC was found to be inversely propor-
tional to the overall desirability probably due to the high ionic
strength (0.1 mol L�1), thus complicating the Cr(III) and Cr(VI)
retention at the material surface. Therefore, the 0.01 mol L�1

acetate/acetic acid buffer solution was chosen for further experi-
ments. The high eluent concentration (2.5 mol L�1) increased the
overall desirability, demonstrating good efficiency of the Cr(III) and
Cr(VI) release from SiO2/Al2O3/TiO2 and SiO2/AAPTMS, respectively,
without any memory effect. The eluent type (HCl or HNO3) was
also studied; a significant decrease in responses was observed
when HCl was changed for HNO3. Hence, the 2.5 mol L�1 HCl
solution was chosen as the best eluent condition for the system.
Fig. 3 reveals that the flow rate had no significant effect on the
preconcentration system, indicating very fast kinetics of the Cr(III)
and Cr(VI) sorption on SiO2/Al2O3/TiO2 and SiO2/AAPTMS, respec-
tively. Therefore, the efficient sample throughput of 21 h�1 was
achieved with a sample loading volume of 20 mL at the flow rate at
7.0 mL min�1. In order to confirm whether the best analytical
signals were obtained under the chosen conditions, three experi-
ments were performed, and the following absorbance values
were obtained: 0.115270.003 [for Cr(III)] and 0.202070.0013
[for Cr(VI)].

3.3. Multivariate analysis of potentially interfering species

Considering that the same sample was percolated simulta-
neously at pH 5.0 through the mini-columns packed with SiO2/
Al2O3/TiO2 and SiO2/AAPTMS in the proposed system, the effect
of potentially interfering species on the Cr(III) and Cr(VI)
preconcentration was investigated herein by means of factorial
designs, and the concentration of both Cr(III) and Cr(VI) was
fixed at 100 mg L�1. Therefore, the following factorial designs
were used: 25–1—for Al(III), Ba(II), Cd(II), Co(II), and Pb(II),
23—for Ca(II), Mg(II), and K(I), and 25–1—for Cu(II), Fe(III), Mn(II),
Ni(II), and Zn(II). The potential interfering species levels are
presented in Table 2. The significance of each species and their
interactions were confirmed by probability plots, as shown in
Fig. 4. It can be seen that all the effects and contrasts of these
species, as well as their interactions, were closer to zero and thus
insignificant. The only statistical interference at the 95% con-
fidence interval was observed for Ca(II), Mg(II) and K(I) at their
highest concentrations, 175, 45 and 12.5 mg L�1, respectively.
Despite this finding, the analytical signal recovery rates found
within a 710% error range in the presence of the first [Al(III),
Ba(II), Cd(II), Co(II), and Pb(II)] and second [Ca(II), Mg(II), and
K(I)], [Cu(II), Fe(III), Mn(II), Ni(II), and Zn(II)] cationic groups
ranged in the following intervals: 90.5–104.5%, 94.6–109.5%, and
93.0–109.7%, respectively [for Cr(III)], and 96.6–103.8%,
99.1–104.2%, and 92.8–106.7%, respectively [for Cr(VI)]. Accord-
ing to these data, it could be stated that the Cr(III) and Cr(VI)
sorption on SiO2/Al2O3/TiO2 and SiO2/AAPTMS was not affected
by the interfering species.

3.4. Breakthrough curve

Breakthrough curves were determined to show the loading
behavior of Cr(III) and Cr(VI) to be sorbed from aqueous media in
a fixed bed mini-column. They make it possible to estimate the
maximum sorption capacity under dynamic conditions, as well as
the breakthrough volume that would not allow the column to
quantitatively retain the analyte. Experiments were performed
under the optimized conditions. 5.0 mL aliquots of 2.0 mg L�1

Cr(III) and Cr(VI) solutions were successively percolated through
SiO2/Al2O3/TiO2 and SiO2/AAPTMS, respectively. Initial and final
concentrations were determined by FAAS. The Cr(III) and Cr(VI)
amounts sorbed on SiO2/Al2O3/TiO2 and SiO2/AAPTMS from each
aliquot were calculated according to Eq. (3).

Q ðmg=gÞ ¼
ðC0�CÞ � VðLÞ

m
ð3Þ

where C0 and C are the Cr(III) and Cr(VI) initial and final concentra-
tions (in the column effluent), respectively (mg L�1); V is the solution
volume (mL); m is the SiO2/Al2O3/TiO2 and SiO2/AAPTMS weight (g)
(in this case, 200 mg). Fig. 5 indicates that the Cr(III) concentration in
the effluent increased rapidly as the solution continued to flow, giving
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Table 2
Potential interfering species and their levels based on factorial design.

Levels Concentration of potential interfering species (mg L�1)

Al(III) Ba(II) Cd(II) Co(II) Pb(II)

�1 54 12.2 12 33 86

1 650 250 500 125 200

Ca(II) Mg(II) K(I)

�1 6200 1600 680

1 175000 450000 125000

Cu(II) Fe(III) Mn(II) Ni(II) Zn(II)

�1 181 100 33.7 67 93

1 1000 5000 200 300 350
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rise to saturation of SiO2/Al2O3/TiO2 with a sample loading volume of
175 mL. On the other hand, a higher sorption rate was observed for
Cr(VI) at the beginning of the column operation, since the C/Co ratio
was very low for the saturation using the sample loading volume of
215 mL. Thus, the maximum sorption capacities of SiO2/AAPTMS
and SiO2/Al2O3/TiO2 toward Cr(VI) and Cr(III) were found to be
1.44 mg g�1 and 0.44, respectively.
3.5. Analytical features of the on-line sequential preconcentration

system

The optimized conditions were used to determine the analytical
performance of the developed method. The calibration graphs for
both Cr(III) and Cr(VI) were constructed in the concentration
ranges of 10.0–375 mg L�1, and the regressions were as follows:
Abs¼0.00189þ0.00127[Cr(III) (mg L�1)] (linear correlation:
0.9981) and Abs¼0.00817þ0.00233[Cr(VI) (mg L�1)] (linear corre-
lation: 0.9993). According to the IUPAC definition [24], the detec-
tion limits of the method, defined as three times the standard
deviation of the blank signal intensity, were 0.66 and 0.27 mg L�1

for Cr(III) and Cr(VI), respectively, whereas the quantification
limits, defined as ten times the standard deviation of the blank
signal intensity, were 2.21 and 0.93 mg L�1 for Cr(III) and Cr(VI),
respectively. The corresponding preconcentration factor (PF)
values, calculated through the slop ratio of the calibration graphs
obtained with and without the preconcentration step [25], were
found to be 17.62 and 32.98 for Cr(III) and Cr(VI), respectively. It is
worthy to emphasize that the sensitivity of the calibration graph
for Cr(III) sorbed on SiO2/Al2O3/TiO2 was improved 8.5-fold when
compared to the sensitivity of the graph for Cr(III) sorbed on SiO2.
This finding confirms the efficiency of the Al2O3/TiO2 mixed oxide
dispersed in the silica matrix for the Cr(III) extraction. The sample
throughput obtained was 21 h�1. The relative standard deviation
for 10 replicate measurements (precision) estimated for Cr(III) and
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Cr(VI) at 20 mg L�1 was 3.52 and 4.08%, respectively, and for Cr(III)
and Cr(VI) at 100 mg L�1, it was 3.58 and 3.61%, respectively. The
efficient concentrations were found to be 6.2 and 11.4 min�1, and
the consumptive index (mL) was 1.12 and 0.6 for Cr(III) and Cr(VI),
respectively [25]. The reproducibility study results showed that the
relative standard deviations for the columns preparation were
2.4 and 6.4% for SiO2/Al2O3/TiO2 and SiO2/AAPTMS (n¼3), respec-
tively. The SiO2/Al2O3/TiO2 mass effect (200, 350 and 400 mg) was
also investigated, and no significant differences (deviation: 4.19%)
were observed for the Cr(III) analytical signal. However, for
SiO2/AAPTMS, the analytical signal decreased when increasing the
mass. Thus, the mass of 200 mg was chosen for both sorbents.
A detailed comparison of the present speciation method with other
previously reported ones is given in Table 3. The method described
herein is characterized by low detection limits and sample con-
sumption. Moreover, it appears to be of particular interest, since it
does not require sample pH readjustments and chemical treat-
ments to give the total chromium amount usually required for
speciation.

3.6. Sample analysis

The developed method was applied to determine Cr(III) and
Cr(VI) in various water and parenteral samples using the opti-
mized conditions and external calibration curves. As Cr(III) and
Cr(VI) were below the detection limits in some samples, recovery



Table 3
Comparison of different preconcentration analytical methods for Cr determination.

System Detection Preconcentration modality Mode DL (mg L�1) FP Applications References

Sorption of Cr(III) and reduction of Cr(VI) FAAS
Sorption of Cr(III) as dithizonate chelate

on Chromosorb 108

Off-

line
Cr(III) 0.75 71

Water, tomato leaves,

soil, tobacco and coffee
[9]

Sorption of Cr(III) and Cr(VI) HPLC
Cloud point extraction using DDTC as

chelating agent

Off-

line

Cr(III)

3.4 Cr(VI)

5.2

Cr(III) 65

Cr(VI) 19
Water [26]

Sorption of Cr(III) and oxidation of Cr(III)

to Cr(VI)
FAAS

Sorption of Cr(III) on Amberlite XAD-

1180 as diphenylcarbazone complex

Off-

line
Cr(VI) 7.7 75

Water/stream sediment/

pharmaceutical
[27]

Sorption of Cr(III) and reduction of Cr(VI) ICP-AES Titanium dioxide
Off-

line
Cr(III) 0.32 50 Water [28]

Sorption of Cr(III) and reduction of Cr(VI) FAAS
Saccharomyces cerevisiae immobilized

on sepiolite

Off-

line
Cr(III) 94.0 75 Water [29]

Sorption of Cr(VI)-cetyltrimethyl

ammonium bromide and oxidation of

Cr(III)

FAAS C-18 bonded silica SPE disks
Off-

line

Cr(III) 15.0

Cr(VI) 20.0
45 Water [30]

Sorption of Cr(VI)-DPC and oxidation of

Cr(III)
FAAS Amberlite XAD-16

Off-

line
Cr(VI) 45.0 25 Water [31]

Sorption of Cr(VI)-ADPC and oxidation of

Cr(III)
FAAS Ambersorb 563 – 2.70 125 Water [32]

Sorption of Cr(III) and Cr(VI)
UV–

Visible
Sawdust

Off-

line

Cr(III) 50.0,

Cr(VI) 40.0

Cr(III) 100,

Cr(VI) 80
Lake/river water [33]

Sorption of Cr(III) and reduction of Cr(VI) ICP-AES
Nanometer titanium dioxide

immobilized on silica gel

Off-

line
Cr(III) 0.22 Cr(III) 50 Water samples [34]

Sorption of Cr(III) and reduction of Cr(VI) FAAS Nb2O5–SiO2
On-

line
Cr(III) 0.34 Cr(III) 23 Water samples [35]

Sorption of Cr(III) and reduction of Cr(VI) FAAS
Moss (Funaria hygrometrica)

immobilized in a polysilicate matrix

Off-

line
Cr(III) 145 Cr(III) 20 Wastewater samples [36]

Sorption of Cr(VI) and oxidation of Cr(III) FAAS Fiber of animal origin
On-

line

Cr(III) and

Cr(VI) 0.30

Cr(III) and

Cr(VI) 32
Drinking water samples [37]

Sorption of Cr(III) and Cr(VI) FAAS SiO2/Al2O3/TiO2, SiO2/AAPTMS
On-

line

Cr(III) 0.66,

Cr(VI) 0.27

Cr(III) 17.62

Cr(VI) 32.98

Water/Physiological

serum/Parenteral

solution

This work

PF¼preconcentration factor; DL¼detection limit.

Table 4
Recovery rates for Cr species in water samples.

Samples Cr added (mg L�1) Cr founda (mg L�1) Recovery rate(%)

Tap water1 Cr(III) 0 ND –

3 3.0370.58 101.0

40 38.3870.30 95.9

Cr(VI) 0 ND –

3 2.8770.09 95.6

40 43.5570.63 108.9

Lake Igapó water Cr(III) 0 1.6670.13 –

3 5.4070.17 115.9

40 41.1370.78 98.7

Cr(VI) 0 ND –

3 2.7570.26 91.7

40 43.0371.0 107.6

Mineral water 1 Cr(III) 0 2.4270.25 –

3 6.2370.36 114.9

40 38.3870.30 90.5

Cr(VI) 0 ND –

3 3.4270.15 114.0

40 43.5570.63 108.9

Mineral water 2 Cr(III) 0 2.7170.33 –

3 5.2870.28 92.5

40 48.5970.67 113.8

Cr(VI) 0 ND –

3 2.9070.60 96.7

40 44.4271.40 111.0

Tap water 2 Cr(III) 0 4.4170.69 –

5 10.2970.71 109.3

Cr(VI) 0 13.3670.70 –

15 31.6871.40 111.7

Tap water 3 Cr(III) 0 5.3970.69 –

6 13.2372.07 116.1

Cr(VI) 0 11.3870.70 –

12 26.8671.22 114.9

ND¼Not detected.
a Results are expressed as mean value7standard deviation (n¼3).

Table 5
Recovery rates for Cr species in parenteral solutions.

Samples Cr added

(mg L�1)

Cr founda

(mg L�1)

Recovery

rate (%)

Physiological serum 1 Cr(III) 0 1.1170.24 –

3 4.6170.32 116.6

Cr(VI) 0 ND –

3 2.5370.11 84.3

Physiological serum 2 Cr(III) 0 ND –

3 3.0370.58 101.0

Cr(VI) 0 ND –

3 2.8770.10 95.7

Water for injection Cr(III) 0 ND –

3 2.9570.09 98.3

Cr(VI) 0 ND –

3 2.7770.09 92.3

Artificial saliva Cr(III) 0 ND –

3 3.2970.33 109.7

Cr(VI) 0 ND –

3 2.7170.16 90.3

Physiological glucose

(5%) solution

Cr(III) 0 ND –

3 3.2370.20 107.8

Cr(VI) 0 ND –

3 2.8370.11 94.3

ND¼Not detected.
a Results are expressed as mean value7standard deviation (n¼3).
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tests were performed by spiking their known amounts.
Tables 4 and 5 present satisfactory recovery rates (84.3–116.6%),
thus confirming the reliability of this speciation method for
different kinds of samples even at concentrations lower than
the allowable limit for drinking water. It is worth noting that
chromium species were determined in the tap water samples
(2 and 3), especially Cr(VI) at high concentrations. The presence of



Table 6
Analytical results for chromium determination in certified reference material

using the on-line sequential preconcentration system.

Sample Certified value

(mg L�1)

Cr(III) founda

(mg L�1)

Cr(VI) founda

(mg L�1)

Standard reference material

NIST SRM 1643e

(‘‘Trace elements in

natural waters’’)

20.4070.24 20.0671.40 ND

ND¼not detected.
a The results are expressed as mean value7standard deviation based on three

replicates (n¼3).
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chromium in these samples may be associated with the presence
of leather processing industries near S~ao José do Rio Preto City.
Although chromium was not detected in some parenteral sam-
ples, the method can be successfully used to monitor this
element, taking into account that some studies have reported its
presence in the concentration range of 0.3–5.0 mg L�1 [38,39]. The
method accuracy for the chromium determination in water
samples was evaluated by the analysis of the NIST 1643e standard
reference material (trace elements in water) (Table 6). A good
agreement between the found (20.0671.40 mg L�1) (n¼3) and
certified (20.4070.24 mg L�1) values was achieved by applying
the t-test at the 95% confidence level.
4. Conclusions

In this work, the performance of the selective on-line Cr(III)
and Cr(VI) preconcentration procedure using dual mini-columns
packed with SiO2/Al2O3/TiO2 and SiO2/AAPTMS was described.
The silica modification with mixed oxides and organosilanes
allowed to determine Cr(III) and Cr(VI) in different kinds of water
and parenteral samples at the same pH (pH 5.0), and not as a
difference between the total chromium content and the amount
of just one single species. Thus, common drawbacks of previous
publications, such as sample pH adjustment, chemical pretreat-
ments for the total chromium determination and the presence of
auxiliary chelating agents that form complexes only with chro-
mium species were overcome in the present research. Moreover,
due to high preconcentration factor values and reduced sample
consumption (20.0 mL), lower detection limits for Cr(III) and
Cr(VI) were obtained in comparison with the previously pub-
lished methods. The materials synthesized also showed high
stability, since the same mini-columns were used throughout
the study, without loss of sorption capacity. These features appear
promising for further researches on chemical modifications of a
silica matrix, aiming at the development of novel speciation
methods that would have better analytical performance.
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